Weak Galerkin Finite Element Methods on Polytopal Meshes
نویسندگان
چکیده
This paper introduces a new weak Galerkin (WG) finite element method for second order elliptic equations on polytopal meshes. This method, called WG-FEM, is designed by using a discrete weak gradient operator applied to discontinuous piecewise polynomials on finite element partitions of arbitrary polytopes with certain shape regularity. The paper explains how the numerical schemes are designed and why they provide reliable numerical approximations for the underlying partial differential equations. In particular, optimal order error estimates are established for the corresponding WG-FEM approximations in both a discrete H1 norm and the standard L2 norm. Numerical results are presented to demonstrate the robustness, reliability, and accuracy of the WG-FEM. All the results are established for finite element partitions with polytopes that are shape regular.
منابع مشابه
A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams
In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...
متن کاملThe lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes
This paper presents the lowest-order weak Galerkin finite element method for solving the Darcy equation on quadrilateral and hybrid meshes consisting of quadrilaterals and triangles. In this approach, the pressure is approximated by constants in element interiors and on edges. The discrete weak gradients of these constant basis functions are specified in local Raviart-Thomas spaces RT[0] for qu...
متن کاملWell-balanced r-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations
In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on r-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed m...
متن کاملDiscontinuous Galerkin methods on hp-anisotropic meshes I: a priori error analysis
We consider the a priori error analysis of hp-version interior penalty discontinuous Galerkin methods for second–order partial differential equations with nonnegative characteristic form under weak assumptions on the mesh design and the local finite element spaces employed. In particular, we prove a priori hp-error bounds for linear target functionals of the solution, on (possibly) anisotropic ...
متن کاملSolving elliptic eigenvalue problems on polygonal meshes using discontinuous Galerkin composite finite element methods
In this paper we introduce a discontinuous Galerkin method on polygonal meshes. This method arises from the Discontinuous Galerkin Composite Finite Element Method (DGFEM) for source problems on domains with micro-structures. In the context of the present paper, the flexibility of DGFEM is applied to handle polygonal meshes. We prove the a priori convergence of the method for both eigenvalues an...
متن کامل